
Page 1 of 12

Parallax Occlusion in Direct3D 11

Frank Luna

February 11, 2012

www.d3dcoder.net

Introduction to 3D Game Programming with DirectX 11 has a chapter explaining normal

mapping and displacement mapping (implemented with hardware tessellation). We saw

that we could improve upon normal mapping by tessellating the geometry and displacing

it with a heightmap to geometrically model the bumps and crevices of the surface.

However, an application may be required to support DirectX 10 for systems that do not

have DirectX 11 capable hardware; therefore, we need a fallback technique for when we

do not have access to hardware tessellation. Parallax Occlusion Mapping is a technique

that gives results similar to tessellation displacement mapping, and can be implemented

in DirectX 10; see Figure 1 for a comparison of techniques.

Figure 1: Parallax Occlusion Mapping is a pixel technique that does not require a high triangle count, but gives
results comparable to tessellation based displacement mapping.

http://www.d3dcoder.net/

Page 2 of 12

§1 Conceptual Overview

The basic idea is illustrated in Figure 2. If the surface we are modeling is not truly

planar, but defined by a heightmap , then the point the eye sees is not the point

on the polygon plane, but instead the point where the view ray intersects the

heightmap. Therefore, when lighting and texturing the polygon point we should not

use the texture coordinates and normal at , but instead use the texture coordinates and

normal associated with the intersection point . If we are using normal mapping, then we

just need the texture coordinates at from which we can sample the normal map to get

the normal vector at . Thus, the crux of the algorithm is to find the parallax offset

vector that tells us how much to offset the texture coordinates at to obtain the texture

coordinates at . As we will see in later sections, this is accomplished by tracing the view

ray through the heightmap.

Figure 2: The point the eye sees is not the point on the polygon plane, but instead the point where the view ray
 intersects the heightmap. The parallax offset vector that tells us how much to offset the texture coordinates at
 to obtain the texture coordinates at .

§2 Computing the Max Parallax Offset Vector

We need an upper limit on how large the parallax offset vector could possibly be. As

with our tessellation displacement mapping demo, we use the convention that a value

 coincides with the polygon surface, and represents the lowest height (most

inward displacement). (Recall that the heightmap values are given in a normalized range

[0, 1], which are then scaled by to world coordinate values.) Figure 3 shows that for a

view ray with starting position at the polygon surface with , it must intersect the

heightmap by the time the ray reaches . Assuming the view vector is normalized,

there exists a such that:

Page 3 of 12

In normalized height coordinates, the difference , but scaled in world

coordinates, the difference is . Therefore,

So, the view ray reaching a height yields the maximum parallax offset:

Figure 3: The maximum parallax offset vector corresponds to the point where the view ray pierces the lowest
possible height .

§3 Tex-Coord per World Unit

So far we have made the assumption that we can use as a texture coordinate offset.

However, if we rotate the normalized view ray from world space to tangent space, the

view ray scale is still in the “world scale.” Moreover, in §2 we computed the

intersection of with the world scaled height . Therefore, is also in the “world

scale” and so is . But to use as a texture coordinate offset, we need it in the

“texture scale.” So we need to convert units:

That is to say, we need to know how many world space units (ws) equals one texture

space unit. Suppose we have a grid in world units, and we map a texture onto

the grid with no tiling. Then 1 texture space unit equals 20 world space units and

Page 4 of 12

As a second example, suppose we have a grid in world units, and we map a

texture onto the grid with tiling. Then 5 texture space unit equals 20 world space

units or 1 texture space unit equals 4 world space units and

So to get everything in texture space coordinates so that we can use as a texture

coordinate offset, we need to revise our equation:

In code, needs to be computed per-pixel. It is unnecessary to perform the

calculation

 per-pixel. So we can define:

compute in the application code, and set it as a constant buffer property. Then our

pixel-shader code can continue to use the original formula:

In practice, it might not be easy to determine

. An easier way would be to just expose a

slider to an artist and let them tweak

 interactively.

§4 Intersecting the Heightmap

To determine the point at which the ray intersects the heightmap, we

linearly march along the ray with uniform step size and sample the heightmap along the

ray (see Figure 4). When the sampled heightmap value is greater than the ray’s height

value (in tangent space the z-axis is “up”), it means we have crossed the heightmap.

Page 5 of 12

Figure 4: Ray marching with uniform step size. We cross the heightmap the first time .

Note that we ray march in the normalized heightmap space [0, 1]. So if we are taking

samples, we must step a vertical distance with each step so that the ray travels

a vertical distance of 1 by the sample.

Once we find where the ray crosses the heightmap, we approximate the

heightmap as a piecewise linear function and do a ray/line intersection test to find the

intersection point. Note that this is a 2D problem because we are looking at the cross

plane that is orthogonal to the polygon plane that contains the view ray. Figure 5 shows

that we can represent the two rays by the equations:

Figure 5: The rays intersect at parameter .

Observe that in this particular construction, the rays intersect at the same parameter (in

general this is not true). Therefore, we can set the rays equal to each other and solve for

 :

Page 6 of 12

In particular, the equation of the second coordinate implies:

The parameter gives us the percentage through the interval where the intersection

occurs. If the interval direction and length is described by

 then the parallax

offset vector is given by:

§5 Adaptive Iteration Count

Figure 6 shows that that glancing view rays require more samples than head-on view rays

since the distance traveled is longer. We estimate the ray sample by interpolating

between minimum and maximum sample count constants based on the angle between the

vector from the surface to the eye and surface normal vector:

int gMinSampleCount = 8;
int gMaxSampleCount = 64;

int sampleCount = (int)lerp(gMaxSampleCount,
 gMinSampleCount,
 dot(toEye, pin.NormalW));

For head-on angles, the dot product will be 1, and the number of samples will be

gMinSampleCount. For parallel angles, the dot product will be 0, and the number of

samples will be gMaxSampleCount.

Figure 6: Glancing view rays travel a further distance than head-on view rays. Therefore, we require more samples
at glancing angles to get an accurate intersection test.

Page 7 of 12

§6 Code

Our parallax occlusion effect file is given below:

#include "LightHelper.fx"

cbuffer cbPerFrame
{
 DirectionalLight gDirLights[3];
 float3 gEyePosW;

 float gFogStart;
 float gFogRange;
 float4 gFogColor;
};

cbuffer cbPerObject
{
 float4x4 gWorld;
 float4x4 gWorldInvTranspose;
 float4x4 gWorldViewProj;
 float4x4 gTexTransform;
 Material gMaterial;

 float gHeightScale;
 int gMinSampleCount;
 int gMaxSampleCount;
};

// Nonnumeric values cannot be added to a cbuffer.
Texture2D gDiffuseMap;
Texture2D gNormalMap;
TextureCube gCubeMap;

SamplerState samLinear
{
 Filter = MIN_MAG_MIP_LINEAR;
 AddressU = WRAP;
 AddressV = WRAP;
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 Tex : TEXCOORD;
 float3 TangentL : TANGENT;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float3 TangentW : TANGENT;
 float2 Tex : TEXCOORD;
};

VertexOut VS(VertexIn vin)

Page 8 of 12

{
 VertexOut vout;

 // Transform to world space space.
 vout.PosW = mul(float4(vin.PosL, 1.0f), gWorld).xyz;
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorldInvTranspose);
 vout.TangentW = mul(vin.TangentL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(float4(vin.PosL, 1.0f), gWorldViewProj);

 // Output vertex attributes for interpolation across triangle.
 vout.Tex = mul(float4(vin.Tex, 0.0f, 1.0f), gTexTransform).xy;

 return vout;
}

float4 PS(VertexOut pin,

uniform int gLightCount,
uniform bool gUseTexure,

 uniform bool gAlphaClip,
 uniform bool gFogEnabled,
 uniform bool gReflectionEnabled) : SV_Target
{
 // Interpolating normal can unnormalize it, so normalize it.
 pin.NormalW = normalize(pin.NormalW);

 // The toEye vector is used in lighting.
 float3 toEye = gEyePosW - pin.PosW;

 // Cache the distance to the eye from this surface point.
 float distToEye = length(toEye);

 // Normalize.
 toEye /= distToEye;

 //
 // Parallax Occlusion calculations to find the texture coords to use.
 //

 float3 viewDirW = -toEye;

 // Build orthonormal basis.
 float3 N = pin.NormalW;
 float3 T = normalize(pin.TangentW - dot(pin.TangentW, N)*N);
 float3 B = cross(N, T);

 float3x3 toTangent = transpose(float3x3(T, B, N));

 float3 viewDirTS = mul(viewDirW, toTangent);

 float2 maxParallaxOffset = -viewDirTS.xy*gHeightScale/viewDirTS.z;

 // Vary number of samples based on view angle between the eye and

// the surface normal. (Head-on angles require less samples than
// glancing angles.)

 int sampleCount = (int)lerp(gMaxSampleCount, gMinSampleCount,

dot(toEye, pin.NormalW));

 float zStep = 1.0f / (float)sampleCount;

Page 9 of 12

 float2 texStep = maxParallaxOffset * zStep;

 // Precompute texture gradients since we cannot compute texture

// gradients in a loop. Texture gradients are used to select the right
// mipmap level when sampling textures. Then we use Texture2D.SampleGrad()
// instead of Texture2D.Sample().

 float2 dx = ddx(pin.Tex);
 float2 dy = ddy(pin.Tex);

 int sampleIndex = 0;
 float2 currTexOffset = 0;
 float2 prevTexOffset = 0;
 float2 finalTexOffset = 0;
 float currRayZ = 1.0f - zStep;
 float prevRayZ = 1.0f;
 float currHeight = 0.0f;
 float prevHeight = 0.0f;

 // Ray trace the heightfield.
 while(sampleIndex < sampleCount + 1)
 {
 currHeight = gNormalMap.SampleGrad(samLinear,

pin.Tex + currTexOffset, dx, dy).a;

 // Did we cross the height profile?
 if(currHeight > currRayZ)
 {
 // Do ray/line segment intersection and compute final tex offset.

 float t = (prevHeight - prevRayZ) /

(prevHeight - currHeight + currRayZ - prevRayZ);

 finalTexOffset = prevTexOffset + t * texStep;

 // Exit loop.
 sampleIndex = sampleCount + 1;
 }
 else
 {
 ++sampleIndex;

 prevTexOffset = currTexOffset;
 prevRayZ = currRayZ;
 prevHeight = currHeight;

 currTexOffset += texStep;

 // Negative because we are going "deeper" into the surface.
 currRayZ -= zStep;
 }
 }

 // Use these texture coordinates for subsequent texture

// fetches (color map, normal map, etc.).
 float2 parallaxTex = pin.Tex + finalTexOffset;

 //
 // Texturing
 //

Page 10 of 12

 // Default to multiplicative identity.
 float4 texColor = float4(1, 1, 1, 1);
 if(gUseTexure)
 {
 // Sample texture.
 texColor = gDiffuseMap.Sample(samLinear, parallaxTex);

 if(gAlphaClip)
 {
 // Discard pixel if texture alpha < 0.1. Note that we do this
 // test as soon as possible so that we can potentially exit

// the shader early, thereby skipping the rest of the shader
// code.

 clip(texColor.a - 0.1f);
 }
 }

 //
 // Normal mapping
 //

 float3 normalMapSample = gNormalMap.Sample(samLinear, parallaxTex).rgb;
 float3 bumpedNormalW = NormalSampleToWorldSpace(normalMapSample,

pin.NormalW, pin.TangentW);

 //
 // Lighting.
 //

 float4 litColor = texColor;
 if(gLightCount > 0)
 {
 // Start with a sum of zero.
 float4 ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
 float4 diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
 float4 spec = float4(0.0f, 0.0f, 0.0f, 0.0f);

 // Sum the light contribution from each light source.
 [unroll]
 for(int i = 0; i < gLightCount; ++i)
 {
 float4 A, D, S;
 ComputeDirectionalLight(gMaterial, gDirLights[i],

 bumpedNormalW, toEye,
 A, D, S);

 ambient += A;
 diffuse += D;
 spec += S;
 }

 litColor = texColor*(ambient + diffuse) + spec;

 if(gReflectionEnabled)
 {
 float3 incident = -toEye;
 float3 reflectionVector = reflect(incident, bumpedNormalW);
 float4 reflectionColor = gCubeMap.Sample(

samLinear, reflectionVector);

 litColor += gMaterial.Reflect*reflectionColor;

Page 11 of 12

 }
 }

 //
 // Fogging
 //

 if(gFogEnabled)
 {
 float fogLerp = saturate((distToEye - gFogStart) / gFogRange);

 // Blend the fog color and the lit color.
 litColor = lerp(litColor, gFogColor, fogLerp);
 }

 // Common to take alpha from diffuse material and texture.
 litColor.a = gMaterial.Diffuse.a * texColor.a;

 return litColor;
}

 §7 Aliasing Issues

Parallax occlusion mapping has aliasing problems as Figure 7 shows. Due to the finite

step size, the ray sometimes misses peaks of the heightmap. Increasing the sampling rate

(i.e., decreasing the step size) helps, but is prohibitively expensive. We note that

tessellation based displacement mapping does not have this problem.

Figure 7: Observe the sampling artifacts.

§8 Extensions and References

Page 12 of 12

[Tatarchuk06] has a detailed description of the algorithm, extends it to support soft

shadows and an LOD system, and gives advice for artists authoring heightmaps.

[Watt05] devotes a chapter in his book to the algorithm. [Drobot09] describes generating

a quadtree structure of the heightmap stored in a texture to improve the performance of

the ray/heightmap intersection test.

[Drobot09] Drobot, Michal. “Quadtree Displacement Mapping with Height Blending,”

GDC Europe 2009.

(http://www.drobot.org/pub/M_Drobot_Programming_Quadtree%20Displacement%20M

apping.pdf)

[Tatarchuk06] Tatarchuk, Natalya. “Practical Parallax Occlusion Mapping with

Approximate Soft Shadows for Detailed Surface Rendering,” ShaderX5: Advanced

Rendering Techniques. Charles River Media, Inc., 2006.

[Watt05] Watt, Alan, and Fabio Policarpo, Advanced Game Development with

Programmable Graphics Hardware, AK Peters, Ltd., 2005.

http://www.drobot.org/pub/M_Drobot_Programming_Quadtree%20Displacement%20Mapping.pdf
http://www.drobot.org/pub/M_Drobot_Programming_Quadtree%20Displacement%20Mapping.pdf

