Exercise Solutions for Introduction to 3D Game Programming with DirectX 11

Frank Luna

Solutions to Part I

Chapter 1

1. Let $\mathbf{u}=(1,2)$ and $\mathbf{v}=(3,-4)$. Perform the following computations and draw the vectors relative to a 2D coordinate system.
a) $\mathbf{u}+\mathbf{v}$
b) $\mathbf{u}-\mathbf{v}$
c) $2 \mathbf{u}+\frac{1}{2} \mathbf{v}$
d) $-2 \mathbf{u}+\mathbf{v}$

Solution:

a) $(1,2)+(3,-4)=(1+3,2+(-4))=(4,-2)$
b) $(1,2)-(3,-4)=(1,2)+(-3,4)=(1-3,2+4)=(-2,6)$
c) $2(1,2)+\frac{1}{2}(3,-4)=(2,4)+\left(\frac{3}{2},-2\right)=\left(\frac{7}{2}, 2\right)$
d) $-2(1,2)+(3,-4)=(-2,-4)+(3,-4)=(1,-8)$
2. Let $\mathbf{u}=(-1,3,2)$ and $\mathbf{v}=(3,-4,1)$. Perform the following computations.
a) $\mathbf{u}+\mathbf{v}$
b) $\mathbf{u}-\mathbf{v}$
c) $3 \mathbf{u}+2 \mathbf{v}$
d) $-2 \mathbf{u}+\mathbf{v}$

Solution:

a) $(-1,3,2)+(3,-4,1)=(-1+3,3+(-4), 2+1)=(2,-1,3)$
b) $(-1,3,2)-(3,-4,1)=(-1,3,2)+(-3,4,-1)=(-4,7,1)$
c) $3(-1,3,2)+2(3,-4,1)=(-3,9,6)+(6,-8,2)=(3,1,8)$
d) $-2(-1,3,2)+(3,-4,1)=(2,-6,-4)+(3,-4,1)=(5,-10,-3)$
3. This exercise shows that vector algebra shares many of the nice properties of real numbers (this is not an exhaustive list). Assume $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right), \mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$, and $\mathbf{w}=\left(w_{x}, w_{y}, w_{z}\right)$. Also assume that c and k are scalars. Prove the following vector properties.
a) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (Commutative Property of Addition)
b) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w} \quad$ (Associative Property of Addition)
c) $(c k) \mathbf{u}=c(k \mathbf{u}) \quad$ (Associative Property of Scalar Multiplication)
d) $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v} \quad$ (Distributive Property 1)
e) $\mathbf{u}(k+c)=k \mathbf{u}+c \mathbf{u} \quad$ (Distributive Property 2)

Solution:

a)

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\left(u_{x}, u_{y}, u_{z}\right)+\left(v_{x}, v_{y}, v_{z}\right) \\
& =\left(u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right) \\
& =\left(v_{x}+u_{x}, v_{y}+u_{y}, v_{z}+u_{z}\right) \\
& =\left(v_{x}, v_{y}, v_{z}\right)+\left(u_{x}, u_{y}, u_{z}\right) \\
& =\mathbf{v}+\mathbf{u}
\end{aligned}
$$

b)

$$
\begin{aligned}
\mathbf{u}+(\mathbf{v}+\mathbf{w}) & =\left(u_{x}, u_{y}, u_{z}\right)+\left(\left(v_{x}, v_{y}, v_{z}\right)+\left(w_{x}, w_{y}, w_{z}\right)\right) \\
& =\left(u_{x}, u_{y}, u_{z}\right)+\left(v_{x}+w_{x}, v_{y}+w_{y}, v_{z}+w_{z}\right) \\
& =\left(u_{x}+\left(v_{x}+w_{x}\right), u_{y}+\left(v_{y}+w_{y}\right), u_{z}+\left(v_{z}+w_{z}\right)\right) \\
& =\left(\left(u_{x}+v_{x}\right)+w_{x},\left(u_{y}+v_{y}\right)+w_{y},\left(u_{z}+v_{z}\right)+w_{z}\right) \\
& =\left(u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right)+\left(w_{x}, w_{y}, w_{z}\right) \\
& =\left(\left(u_{x}, u_{y}, u_{z}\right)+\left(v_{x}, v_{y}, v_{z}\right)\right)+\left(w_{x}, w_{y}, w_{z}\right) \\
& =(\mathbf{u}+\mathbf{v})+\mathbf{w}
\end{aligned}
$$

c)

$$
\begin{aligned}
(c k) \mathbf{u} & =(c k)\left(u_{x}, u_{y}, u_{z}\right) \\
& =\left((c k) u_{x},(c k) u_{y},(c k) u_{z}\right) \\
& =\left(c\left(k u_{x}\right), c\left(k u_{y}\right), c\left(k u_{z}\right)\right) \\
& =c\left(k u_{x}, k u_{y}, k u_{z}\right) \\
& =c(k \mathbf{u})
\end{aligned}
$$

d)

$$
\begin{aligned}
k(\mathbf{u}+\mathbf{v}) & =k\left(\left(u_{x}, u_{y}, u_{z}\right)+\left(v_{x}, v_{y}, v_{z}\right)\right) \\
& =k\left(u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(k\left(u_{x}+v_{x}\right), k\left(u_{y}+v_{y}\right), k\left(u_{z}+v_{z}\right)\right) \\
& =\left(k u_{x}+k v_{x}, k u_{y}+k v_{y}, k u_{z}+k v_{z}\right) \\
& =\left(k u_{x}, k u_{y}, k u_{z}\right)+\left(k v_{x}, k v_{y}, k v_{z}\right) \\
& =k \mathbf{u}+k \mathbf{v}
\end{aligned}
$$

e)

$$
\begin{aligned}
\mathbf{u}(k+c) & =\left(u_{x}, u_{y}, u_{z}\right)(k+c) \\
& =\left(u_{x}(k+c), u_{y}(k+c), u_{z}(k+c)\right) \\
& =\left(k u_{x}+c u_{x}, k u_{y}+c u_{y}, k u_{z}+c u_{z}\right) \\
& =\left(k u_{x}, k u_{y}, k u_{z}\right)+\left(c u_{x}, c u_{y}, c u_{z}\right) \\
& =k \mathbf{u}+c \mathbf{u}
\end{aligned}
$$

4. Solve the equation $2((1,2,3)-\mathbf{x})-(-2,0,4)=-2(1,2,3)$ for \mathbf{x}.

Solution: Use vector algebra to solve for \mathbf{x} :

$$
\begin{aligned}
2((1,2,3)-\mathbf{x})-(-2,0,4) & =-2(1,2,3) \\
(2,4,6)-2 \mathbf{x}+(2,0,-4) & =(-2,-4,-6) \\
-2 \mathbf{x}+(2,0,-4) & =(-4,-8,-12) \\
-2 \mathbf{x} & =(-6,-8,-8) \\
\mathbf{x} & =(3,4,4)
\end{aligned}
$$

5. Let $\mathbf{u}=(-1,3,2)$ and $\mathbf{v}=(3,-4,1)$. Normalize \mathbf{u} and \mathbf{v}.

Solution:

$$
\begin{gathered}
\|\mathbf{u}\|=\sqrt{(-1)^{2}+3^{2}+2^{2}}=\sqrt{1+9+4}=\sqrt{14} \\
\widehat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\left(-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right) \\
\|\mathbf{v}\|=\sqrt{3^{2}+(-4)^{2}+1^{2}}=\sqrt{9+16+1}=\sqrt{26} \\
\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{3}{\sqrt{26}},-\frac{4}{\sqrt{26}}, \frac{1}{\sqrt{26}}\right)
\end{gathered}
$$

6. Let k be a scalar and let $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$. Prove that $\|k u\|=|k|\|\mathbf{u}\|$.

$$
\|k \mathbf{u}\|=\sqrt{\left(k u_{x}\right)^{2}+\left(k u_{y}\right)^{2}+\left(k u_{z}\right)^{2}}=\sqrt{k^{2}\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)}=|k| \sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}=|k|\|\mathbf{u}\|
$$

7. Is the angle between \mathbf{u} and \mathbf{v} orthogonal, acute, or obtuse?
a) $\mathbf{u}=(1,1,1), \mathbf{v}=(2,3,4)$
b) $\mathbf{u}=(1,1,0), \mathbf{v}=(-2,2,0)$
c) $\mathbf{u}=(-1,-1,-1), \mathbf{v}=(3,1,0)$
a) $\mathbf{u} \cdot \mathbf{v}=1(2)+1(3)+1(4)=9>0 \Rightarrow$ acute
b) $\mathbf{u} \cdot \mathbf{v}=1(-2)+1(2)+0(0)=0 \Rightarrow$ orthogonal
c) $\mathbf{u} \cdot \mathbf{v}=-1(3)+(-1)(1)+(-1)(0)=-4<0 \Rightarrow$ obtuse
8. Let $\mathbf{u}=(-1,3,2)$ and $\mathbf{v}=(3,-4,1)$. Find the angle θ between \mathbf{u} and \mathbf{v}.

Solution: Using the equation $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$ we have:

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right) \\
& =\cos ^{-1}\left(\frac{-1(3)+3(-4)+2(1)}{\sqrt{14} \sqrt{26}}\right) \\
& =\cos ^{-1}\left(\frac{-13}{\sqrt{14} \sqrt{26}}\right) \\
& =132.95^{\circ}
\end{aligned}
$$

9. Let $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right), \mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$, and $\mathbf{w}=\left(w_{x}, w_{y}, w_{z}\right)$. Also let c and k be scalars. Prove the following dot product properties.
a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
c) $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(k \mathbf{v})$
d) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
e) $\mathbf{0} \cdot \mathbf{v}=0$

Solution:

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\left(u_{x}, u_{y}, u_{z}\right) \cdot\left(v_{x}, v_{y}, v_{z}\right) \\
& =u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z} \\
& =\left(v_{x}, v_{y}, v_{z}\right) \cdot\left(u_{x}, u_{y}, u_{z}\right) \\
& =\mathbf{v} \cdot \mathbf{u} \\
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})= & \left(u_{x}, u_{y}, u_{z}\right) \cdot\left(v_{x}+w_{x}, v_{y}+w_{y}, v_{z}+w_{z}\right) \\
= & u_{x}\left(v_{x}+w_{x}\right)+u_{y}\left(v_{y}+w_{y}\right)+u_{z}\left(v_{z}+w_{z}\right) \\
= & u_{x} v_{x}+u_{x} w_{x}+u_{y} v_{y}+u_{y} w_{y}+u_{z} v_{z}+u_{z} w_{z} \\
= & \left(u_{x} v_{x}+u_{y} v_{y}+u_{z}\right)+\left(u_{x} w_{x}+u_{y} w_{y}+u_{z} w_{z}\right) \\
= & \mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
k(\mathbf{u} \cdot \mathbf{v}) & =k\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right) \\
& =\left(k u_{x}\right) v_{x}+\left(k u_{y}\right) v_{y}+\left(k u_{z}\right) v_{z}
\end{aligned}
$$

$$
\begin{aligned}
&=(k \mathbf{u}) \cdot \mathbf{v} \\
&=u_{x}\left(k v_{x}\right)+u_{y}\left(k v_{y}\right)+u_{z}\left(k v_{z}\right) \\
&=\mathbf{u} \cdot(k \mathbf{v}) \\
& \mathbf{v} \cdot \mathbf{v}=v_{x} v_{x}+v_{y} v_{y}+v_{z} v_{z} \\
&=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \\
& \quad=\|\mathbf{v}\|^{2} \\
& \mathbf{0} \cdot \mathbf{v}=0 v_{x}+0 v_{y}+0 v_{z}=0
\end{aligned}
$$

10. Use the law of cosines $\left(c^{2}=a^{2}+b^{2}-2 a b \cos \theta\right.$, where a, b, and c are the lengths of the sides of a triangle and θ is the angle between sides a and b) to show

$$
u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

Hint: Consider Figure 1.9 and set $c^{2}=\|\mathbf{u}-\mathbf{v}\|^{2}, a^{2}=\|\mathbf{u}\|^{2}$ and $b^{2}=\|\mathbf{v}\|^{2}$, and use the dot product properties from the previous exercise.

Solution:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos \theta \\
\|\mathbf{u}-\mathbf{v}\|^{2} & =\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \\
(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v}) & =\mathbf{u} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}-2\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \\
\mathbf{u} \cdot \mathbf{u}-2(\mathbf{u} \cdot \mathbf{v})+\mathbf{v} \cdot \mathbf{v} & =\mathbf{u} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}-2\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \\
\mathbf{u} \cdot \mathbf{v} & =\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
\end{aligned}
$$

11. Let $\mathbf{n}=(-2,1)$. Decompose the vector $\mathbf{g}=(0,-9.8)$ into the sum of two orthogonal vectors, one parallel to \mathbf{n} and the other orthogonal to \mathbf{n}. Also, draw the vectors relative to a 2D coordinate system.

Solution:

$$
\begin{gathered}
\mathbf{g}_{\|}=\operatorname{proj}_{\mathbf{n}}(\mathbf{g})=\frac{(\mathbf{g} \cdot \mathbf{n})}{\|\mathbf{n}\|^{2}} \mathbf{n}=\frac{-9.8}{5}(-2,1)=-1.96(-2,1)=(3.92,-1.96) \\
\mathbf{g}_{\perp}=\mathbf{g}-\mathbf{g}_{\|}=(0,-9.8)-(3.92,-1.96)=(-3.92,-7.84)
\end{gathered}
$$

12. Let $\mathbf{u}=(-2,1,4)$ and $\mathbf{v}=(3,-4,1)$. Find $\mathbf{w}=\mathbf{u} \times \mathbf{v}$, and show $\mathbf{w} \cdot \mathbf{u}=0$ and $\mathbf{w} \cdot \mathbf{v}=0$.

Solution:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{u} \times \mathbf{v}=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right) \\
& =(1+16,12+2,8-3)
\end{aligned}
$$

$$
=(17,14,5)
$$

$$
\begin{gathered}
\mathbf{w} \cdot \mathbf{u}=17(-2)+14(1)+5(4)=-34+14+20=0 \\
\mathbf{w} \cdot \mathbf{v}=17(3)+14(-4)+5(1)=51-56+5=0
\end{gathered}
$$

13. Let the following points define a triangle relative to some coordinate system:
$\mathbf{A}=(0,0,0), \mathbf{B}=(0,1,3)$, and $\mathbf{C}=(5,1,0)$. Find a vector orthogonal to this triangle. Hint: Find two vectors on two of the triangle's edges and use the cross product.

Solution:

$$
\begin{aligned}
& \mathbf{u}=\mathbf{B}-\mathbf{A}=(0,1,3) \\
& \mathbf{v}=\mathbf{C}-\mathbf{A}=(5,1,0) \\
& \mathbf{n}=\mathbf{u} \times \mathbf{v}=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right) \\
& =(0-3,15-0,0-5) \\
& =(-3,15,-5)
\end{aligned}
$$

14. Prove that $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$. Hint: Start with $\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$ and use the trigonometric identity $\cos ^{2} \theta+\sin ^{2} \theta=1 \Rightarrow \sin \theta=\sqrt{1-\cos ^{2} \theta}$; then apply Equation 1.4.

Solution:

To make the derivation simpler, we compute the following three formulas up front:

$$
\begin{align*}
&\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}=\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \\
&= u_{x}^{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)+u_{y}^{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)+u_{z}^{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \tag{1}\\
&= u_{x}^{2} v_{x}^{2}+u_{x}^{2} v_{y}^{2}+u_{x}^{2} v_{z}^{2}+u_{y}^{2} v_{x}^{2}+u_{y}^{2} v_{y}^{2}+u_{y}^{2} v_{z}^{2}+u_{z}^{2} v_{x}^{2}+u_{z}^{2} v_{y}^{2}+u_{z}^{2} v_{z}^{2} \\
&(\mathbf{u} \cdot \mathbf{v})^{2}=\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right)\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right) \\
&= u_{x} v_{x}\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right)+u_{y} v_{y}\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right) \\
& \quad+u_{z} v_{z}\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right) \tag{2}\\
&= u_{x} v_{x} u_{x} v_{x}+u_{x} v_{x} u_{y} v_{y}+u_{x} v_{x} u_{z} v_{z}+u_{y} v_{y} u_{x} v_{x}+u_{y} v_{y} u_{y} v_{y} \\
& \quad+u_{y} v_{y} u_{z} v_{z}+u_{z} v_{z} u_{x} v_{x}+u_{z} v_{z} u_{y} v_{y}+u_{z} v_{z} u_{z} v_{z} \\
&= u_{x}^{2} v_{x}^{2}+2 u_{x} v_{x} u_{y} v_{y}+2 u_{x} v_{x} u_{z} v_{z}+u_{y}^{2} v_{y}^{2}+2 u_{y} v_{y} u_{z} v_{z}+u_{z}^{2} v_{z}^{2}
\end{align*} \quad \begin{array}{r}
\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}=u_{x}^{2} v_{y}^{2}+u_{x}^{2} v_{z}^{2}+u_{y}^{2} v_{x}^{2}+u_{y}^{2} v_{z}^{2}+u_{z}^{2} v_{x}^{2}+u_{z}^{2} v_{y}^{2} \\
\quad-2 u_{x} v_{x} u_{y} v_{y}-2 u_{x} v_{x} u_{z} v_{z}-2 u_{y} v_{y} u_{z} v_{z} \\
=\left(u_{y}^{2} v_{z}^{2}-2 u_{y} v_{y} u_{z} v_{z}+u_{z}^{2} v_{y}^{2}\right)+\left(u_{z}^{2} v_{x}^{2}-2 u_{x} v_{x} u_{z} v_{z}+u_{x}^{2} v_{z}^{2}\right) \tag{3}\\
\\
\quad+\left(u_{x}^{2} v_{y}^{2}+-2 u_{x} v_{y}+u_{y}^{2} v_{x}^{2}\right)
\end{array}
$$

Now,

$$
\begin{aligned}
\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta & =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}}} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{\frac{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}}} \\
& =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}}
\end{aligned}
$$

And
$\|\mathbf{u} \times \mathbf{v}\|=\left\|u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right\|$
$=\sqrt{\left(u_{y} v_{z}-u_{z} v_{y}\right)^{2}+\left(u_{z} v_{x}-u_{x} v_{z}\right)^{2}+\left(u_{x} v_{y}-u_{y} v_{x}\right)^{2}}$
$=\sqrt{\left(u_{y}^{2} v_{z}^{2}-2 u_{y} v_{z} u_{z} v_{y}+u_{z}^{2} v_{y}^{2}\right)+\left(u_{z}^{2} v_{x}^{2}-2 u_{z} v_{x} u_{x} v_{z}+u_{x}^{2} v_{z}^{2}\right)+\left(u_{x}^{2} v_{y}^{2}-2 u_{x} v_{y} u_{y} v_{x}+u_{y}^{2} v_{x}^{2}\right)}$
$=\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}}$
Thus we obtain the desired result:

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
$$

15. Prove that $\|\mathbf{u} \times \mathbf{v}\|$ gives the area of the parallelogram spanned by \mathbf{u} and \mathbf{v}; see Figure below.

Solution:

The area is the base times the height:

$$
A=\|\mathbf{v}\| h
$$

Using trigonometry, the height is given by $h=\|\mathbf{u}\| \sin (\theta)$. This, along with the application of Exercise 14, we can conclude:

$$
A=\|\mathbf{u}\|\|\mathbf{v}\| \sin (\theta)=\|\mathbf{u} \times \mathbf{v}\|
$$

16. Give an example of 3 D vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} such that $\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) \neq(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$. This shows the cross product is generally not associative. Hint: Consider combinations of the simple vectors $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$.

Solution:

Choose $\mathbf{u}=(1,1,0), \mathbf{v}=\mathbf{i}$, and $\mathbf{w}=\mathbf{j}$. Then:

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(1,1,0) \times \mathbf{k}=(1,-1,0)
$$

But,

$$
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=-\mathbf{k} \times \mathbf{j}=\mathbf{i}
$$

17. Prove that the cross product of two nonzero parallel vectors results in the null vector; that is, $\mathbf{u} \times k \mathbf{u}=0$. Hint: Just use the cross product definition.

Solution:

$$
\begin{aligned}
\mathbf{u} \times k \mathbf{u} & =\left(u_{y} k u_{z}-u_{z} k u_{y}, u_{z} k u_{x}-u_{x} k u_{z}, u_{x} k u_{y}-u_{y} k u_{x}\right) \\
& =\left(k u_{y} u_{z}-k u_{z} u_{y}, k u_{z} u_{x}-k u_{x} u_{z}, k u_{x} u_{y}-k u_{y} u_{x}\right) \\
& =\mathbf{0}
\end{aligned}
$$

18. Orthonormalize the set of vectors $\{(1,0,0),(1,5,0),(2,1,-4)\}$ using the Gram-Schmidt process.

Solution:

Let $\mathbf{v}_{0}=(1,0,0), \mathbf{v}_{1}=(1,5,0)$, and $\mathbf{v}_{2}=(2,1,-4)$.
Set

$$
\mathbf{w}_{0}=(1,0,0)
$$

Then

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{w}_{\mathbf{0}}} & \left(\mathbf{v}_{1}\right)=\left(\mathbf{w}_{0} \cdot \mathbf{v}_{0}\right) \mathbf{w}_{0}=(1,0,0) \\
\mathbf{x}_{1} & =(1,5,0)-\operatorname{proj}_{\mathbf{w}_{0}}\left(\mathbf{v}_{1}\right) \\
& =(1,5,0)-(1,0,0) \\
& =(0,5,0)
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{w}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|}=(0,1,0) \\
\operatorname{proj}_{\mathbf{w}_{\mathbf{0}}}\left(\mathbf{v}_{2}\right)=\left(\mathbf{w}_{0} \cdot \mathbf{v}_{2}\right) \mathbf{w}_{0}=(2,0,0) \\
\operatorname{proj}_{\mathbf{w}_{\mathbf{1}}}\left(\mathbf{v}_{2}\right)=\left(\mathbf{w}_{1} \cdot \mathbf{v}_{2}\right) \mathbf{w}_{0}=(0,1,0) \\
\mathbf{x}_{2}=(2,1,-4)-\operatorname{proj}_{\mathbf{w}_{\mathbf{0}}}\left(\mathbf{v}_{2}\right)-\operatorname{proj}_{\mathbf{w}_{\mathbf{1}}}\left(\mathbf{v}_{2}\right) \\
=(2,1,-4)-(2,0,0)-(0,1,0) \\
=(0,0,-4) \\
\mathbf{w}_{2}=\frac{\mathbf{x}_{2}}{\left\|\mathbf{x}_{2}\right\|}=(0,0,-1)
\end{gathered}
$$

It is clear that the set $\{(1,0,0),(0,1,0),(0,0,-1)\}$ is orthonormal.

