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Introduction to 3D Game Programming 
with DirectX 9.0c: A Shader Approach 
 
Part I Solutions 
 
 
Note 1: Please email to frank@moon-labs.com if you find any errors. 
 
Note 2: Use only after you have tried, and struggled with, the problems yourself. 
 
 

Chapter 1 Vector Algebra 
 
1. Let ( )1, 2, 0u =  and ( )3, 4, 0v = − .  Compute u v+ , u v− , 2 1 2u v+ , and 2u v− +  
and draw the vectors relative to a coordinate system. 
 

( ) ( ) ( )( ) ( )1, 2, 0 3, 4, 0 1 3, 2 4 , 0 0 4, 2, 0u v+ = + − = + + − + = −  

( ) ( ) ( )( ) ( )1, 2, 0 3, 4, 0 1 3, 2 4 , 0 0 2, 6,0u v− = − − = − − − − = −  

( ) ( ) ( )( ) ( )2 1 2 2 1, 2, 0 1 2 3, 4, 0 2 3 2, 4 2 , 0 0 7 2, 2,0u v+ = + − = + + − + =  

( ) ( ) ( )( ) ( )2 2 1, 2, 0 3, 4, 0 2 3, 4 4 , 0 0 1, 8,0u v− + = − + − = − + − + − + = −  
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2. Let ( )2,1, 4u = −  and ( )3, 4,1v = − .  Normalize u  and v . 
 

 ( )
( )

( )
2 2 2

2,1, 4 2,1, 4 2 1 4, ,
21 21 21 212 1 4

n
uu
u

− − − = = = =  
 − + +

 

 ( )
( )

( )
22 2

3, 4,1 3, 4,1 3 4 1, ,
26 26 26 263 4 1

n
vv
v

− − − 
= = = =  

 + − +
 

 
3. Show u u  has a length of one unit.  (Hint: Compute the length of u u .) 
 
The length of ( ), ,x y zu u u u u u u u=  is given by: 
 

2 2 2 2 2 22 2 2

2 1x y zy x y zx z
u u uu u u u uu u

u u u u uu

+ +      + +
+ + = = = =          

     
. 

 
4. Is the angle between u  and v  orthogonal, acute, or obtuse? 
 a. ( )1,1,1u = , ( )2, 2, 2v =  

 b. ( )1,1, 0u = , ( )2, 2, 0v = −  

 c. ( )1, 1, 1u = − − − , ( )3,1, 0v =  
 
Use the geometric properties of the dot product given on page 10: 
 
 ( ) ( )1,1,1 2, 2, 2 1 2 1 2 1 2 6 0  acute angle⋅ = ⋅ + ⋅ + ⋅ = > ⇒  

 ( ) ( ) ( )1,1, 0 2, 2, 0 1 2 1 2 0 0 0  orthogonal⋅ − = ⋅ − + ⋅ + ⋅ = ⇒  

 ( ) ( ) ( ) ( ) ( )1, 1, 1 3,1, 0 1 3 1 1 1 0 4 0  obtuse angle− − − ⋅ = − ⋅ + − ⋅ + − ⋅ = − < ⇒  
 
5. Let ( )2,1, 4u = −  and ( )3, 4,1v = − .  Find the angle θ  between u  and v . 
 
Use Equation 1.4: 
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 ( ) ( )
( ) ( )

1

1

2 22 2 2 2

1

1

cos

cos

cos

2,1, 4 3, 4,1
cos

2 1 4 3 4 1

6 4 4cos
21 26
6cos

546
104.88

u v u v
u v
u v

u v
u v

θ

θ

θ

θ

θ

θ

θ

−

−

−

−

⋅ =

⋅
=

⋅
=

− ⋅ −
=

− + + + − +

− − +
=

−
=

≈ °

 

 
6. Let ( ), ,x y zu u u u= , ( ), ,x y zv v v v= , and ( ), ,x y zw w w w= , show that the following 

properties are true for 3 : 
 a. u v v u⋅ = ⋅   
 b. ( )u v w u v u w⋅ + = ⋅ + ⋅  

 c. ( ) ( ) ( )k u v ku v u kv⋅ = ⋅ = ⋅  

 d. 2v v v⋅ =  

 e. 0 0v⋅ =  
 
(Hint: Just use the definition, for example, 

( ) ( )
2 22 2 2 2 2 2

x x y y z z x y z x y zv v v v v v v v v v v v v v v⋅ = + + = + + = + + = .) 

  
a) 

 

( ) ( )

( ) ( )

, , , ,

, , , ,

x y z x y z

x x y y z z

x x y y z z

x y z x y z

u v u u u v v v

u v u v u v

v u v u v u

v v v u u u

v u

⋅ = ⋅

= + +

= + +

= ⋅

= ⋅

 

b)  
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( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( )

, , , , , ,

, , , ,

x y z x y z x y z

x y z x x y y z z

x x x y y y z z z

x x x x y y y y z z z z

x x y y z z x x y y z z

u v w u u u v v v w w w

u u u v w v w v w

u v w u v w u v w

u v u w u v u w u v u w

u v u v u v u w u w u w

u v u w

 ⋅ + = ⋅ + 

= ⋅ + + +

= + + + + +

= + + + + +

= + + + + +

= ⋅ + ⋅

 

 
c)  

( ) ( )

( ) ( ) ( )
( )

x x y y z z

x x y y z z

x x y y z z

k u v k u v u v u v

ku v ku v ku v

ku v ku v ku v

ku v

⋅ = + +

= + +

= + +

= ⋅

 

 
( ) ( )

( ) ( ) ( )
( )

x x y y z z

x x y y z z

x x y y z z

k u v k u v u v u v

ku v ku v ku v

u kv u kv u kv

u kv

⋅ = + +

= + +

= + +

= ⋅

 

  

d) ( ) ( )
2 22 2 2 2 2 2

x x y y z z x y z x y zv v v v v v v v v v v v v v v⋅ = + + = + + = + + =  

 
e) ( ) ( )0 0, 0, 0 , , 0 0 0 0x y z x y zv v v v v v v⋅ = ⋅ = + + =  
 
7. Use the Law of Cosines ( 2 2 2 2 cosc a b ab θ= + − , where a, b, and c are the lengths of 
the sides of a triangle and θ  is the angle between sides a and b) to show 

cosx x y y z zu v u v u v u v θ+ + = .  (Hint: Draw a picture and set 22c u v= − , 22a u= , 

and 22b v= , and use the dot product properties from the previous exercise.) 
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The figure shows the setup, then by the Law of Cosines: 
 

( ) ( )
( )
( )

( )
( )

2 2 2

2 2 2

2 2

2 2

2 2 2 2

2 cos

2 cos

2 cos

2 2 cos

2 2 cos

2 2 cos

cos

cosx x y y z z

c a b ab

u v u v u v

u v u v u v u v

u u u v v v u v u v

u u v v u v u v

u v u v

u v u v

u v u v u v u v

θ

θ

θ

θ

θ

θ

θ

θ

= + −

− = + −

− ⋅ − = + −

⋅ − ⋅ + ⋅ = + −

− ⋅ + = + −

− ⋅ = −

⋅ =

+ + =

 

 
8. Let ( )4, 3, 0v =  and ( )2 5 ,1 5 , 0n = .  Show that n  is a unit vector and find the 

orthogonal projection, p , of v  on n .  Then find a vector w  orthogonal to n  such that 
v p w= + .  (Hint: Draw the vectors for insight, what does v p−  look like?) 
 
We have,  
 

( ) ( ) ( )
2 2 2 4 1

5 52 5 1 5 0 1 1n = + + = + = = . 

 
So n  is a unit vector.  To find the projection, we use the equation below Figure 1.8: 
 

( )
( ) ( )
( )

( )
( )

8 3
5 5

11
5

11 2 1
5 5 5

22 11
5 5

4, 3, 0 2 5 ,1 5 , 0

, , 0

, , 0

p v n n

n

n

n

= ⋅

 = ⋅ 

= +

=

=

=

 

 
If v p w= + , then ( ) ( ) ( ) ( ) ( )20 1522 11 22 11 2 4

5 5 5 5 5 5 5 54, 3, 0 , , 0 , , 0 , , 0 , , 0w v p −= − = − = − = .  

Moreover, because ( ) ( )2 4 2 1 2 2 4 1
5 5 5 55 5 5 5

, , 0 , , 0 0− ⋅ = − + = , we have that w  is orthogonal 

to n . 
 
9. Let ( )2,1, 4u = −  and ( )3, 4,1v = − .  Find w u v= × , and show 0w u⋅ =  and 0w v⋅ = . 
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Apply Equation 1.5: 
 

 

( ) ( )
( ) ( ) ( )( )

( )

2,1, 4 3, 4,1

1 1 4 4 , 4 3 2 1, 2 4 1 3

17,14, 5

u v× = − × −

= ⋅ − ⋅ − ⋅ − − ⋅ − − − ⋅

=

 

 
 ( ) ( )17,14, 5 2,1, 4 2 17 14 1 5 4 0w u⋅ = ⋅ − = − ⋅ + ⋅ + ⋅ =  

 ( ) ( )17,14, 5 3, 4,1 17 3 4 14 5 1 0w v⋅ = ⋅ − = ⋅ − ⋅ + ⋅ =  
 
10. Let the following points define a triangle relative to some coordinate system: 

( )0, 0, 0A = , ( )0,1, 3B = , and ( )5,1, 0C = .  Find a vector orthogonal to this triangle.  
(Hint: Find two vectors on two of the triangle’s edges and use the cross product.) 
 
The two vectors on the edges of the triangle are: 
 

 
( )
( )
0,1, 3

5,1, 0

u B A

v C A

= − =

= − =
 

 
Then a vector orthogonal to this triangle is given by: 
 
  ( ) ( ) ( )0,1, 3 5,1, 0 3,15, 5u v× = × = − − . 
 
11. Suppose that we have frames A and B.  Let ( )1, 2, 0Ap = −  and ( )1, 2, 0Aq =  
represent a point and force, respectively, relative to frame A.  Moreover, let 

( )6, 2, 0O = − , ( )1 2 ,1 2 , 0u = , ( )1 2 ,1 2 , 0v = − , and ( )0, 0,1w =  describe 

frame A relative to frame B.  Find ( ), ,Bp x y z=  and ( ), ,Bq x y z=  that describe the 
point and force relative to frame B.  
 

( ) ( )3 6 2 2 2 11 2 1 2
2 2 2 2 2 2

1 2 0 6, 2, 0 , , 0Bp u v w O − −= − + + = + − − + =  

( ) ( )31 2 1 2 1
2 2 2 2 2 2

1 2 0 , , 0 , , 0Bq u v w −= + + = − + =  

 
12. Let ( ) ( ) ( )1,1 2,1p t t= +  be a ray relative to some coordinate system.  Plot the points 
on the ray at t = 0.0, 0.5, 1.0, 2.0, and 5.0. 
 
The points are:  
 
 ( ) ( ) ( ) ( )1,1 0 2,1 1,1p t = + =  

 ( ) ( ) ( ) ( )1
21,1 2,1 2, 3 2p t = + =  
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 ( ) ( ) ( ) ( )1,1 1 2,1 3, 2p t = + =  

 ( ) ( ) ( ) ( )1,1 2 2,1 5, 3p t = + =  

 ( ) ( ) ( ) ( )1,1 5 2,1 11, 6p t = + =  
 
And the plot: 
 

 
 
13. Let 0p  and 1p  define the endpoints of a line segment.  Show that the equation for a 
line segment can also be written as ( ) ( ) 0 11p t t p tp= − +  for [ ]0,1t∈ . 
 
 ( ) ( ) ( )0 1 0 0 1 0 0 11p t p t p p p tp tp t p tp= + − = + − = − +  
 
14. Rewrite the program in §1.8 twice; first using 2D vectors (D3DXVECTOR2) and 
second using 4D vectors (D3DXVECTOR4).  (Hint: Search the index for these keywords 
in the DirectX SDK documentation: D3DXVECTOR2, D3DXVECTOR4, D3DXVec2, and 
D3DXVec4.) 
 
We rewrite the program using D3DXVECTOR2; the other case is analogous. 
 
#include <d3dx9.h> 
#include <iostream> 
using namespace std; 
 
// Overload the  "<<" operators so that we can use cout to  
// output D3DXVECTOR2 objects. 
 
ostream& operator<<(ostream& os, D3DXVECTOR2& v) 
{ 
 os << "(" << v.x << ", " << v.y << ")"; 
 return os; 
} 
 
int main() 
{ 
 // Using constructor, D3DXVECTOR2(FLOAT x, FLOAT y); 
 D3DXVECTOR2 u(1.0f, 2.0f); 



Frank Luna Page 8 6/17/2006 

 
 // Using constructor, D3DXVECTOR2(CONST FLOAT *); 
 float x[2] = {-2.0f, 1.0f}; 
 D3DXVECTOR2 v(x); 
 
 // Using default constructor, D3DXVECTOR2(); 
 D3DXVECTOR2 a, b, c, d;   
 
 // Vector addition: D3DXVECTOR2 operator +  
 a = u + v; 
 
 // Vector subtraction: D3DXVECTOR2 operator -  
 b = u - v; 
 
 // Scalar multiplication: D3DXVECTOR2 operator *  
 c = u * 10; 
 
 // ||u|| 
 float length = D3DXVec2Length(&u); 
 
 // d = u / ||u|| 
 D3DXVec2Normalize(&d, &u); 
 
 // s = u dot v 
 float s = D3DXVec2Dot(&u, &v); 
 
 cout << "u       = " << u << endl; 
 cout << "v       = " << v << endl; 
 cout << "a       = " << a << endl; 
 cout << "b       = " << b << endl; 
 cout << "c       = " << c << endl; 
 cout << "d       = " << d << endl; 
 cout << "||u||   = " << length << endl; 
 cout << "u dot v = " << s << endl; 
 
 return 0; 
} 
 

Chapter 2 Matrix Algebra 
 
1. Let  
 

3 0 0 0
0 2 0 0
0 0 4 0
0 0 0 1

S

 
 − =
 
 
 

, 

1 0 0 0
0 1 0 0
0 0 1 0
2 5 1 1

T

 
 
 =
 
 − − 

, and [ ]2 1 1 1u = − . 

 
Compute the following matrix products: ST , TS , uS , uT , and ( )u ST .  Does ST TS= ? 
 
Just use the definition of matrix multiplication (i.e., Equation 2.1): 
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3 0 0 0 1 0 0 0 3 0 0 0
0 2 0 0 0 1 0 0 0 2 0 0
0 0 4 0 0 0 1 0 0 0 4 0
0 0 0 1 2 5 1 1 2 5 1 1

ST

     
     − −     = =
     
     − − − −     

 

1 0 0 0 3 0 0 0 3 0 0 0
0 1 0 0 0 2 0 0 0 2 0 0
0 0 1 0 0 0 4 0 0 0 4 0
2 5 1 1 0 0 0 1 6 10 4 1

TS

     
     − −     = =
     
     − − −     

 

[ ] [ ]

3 0 0 0
0 2 0 0

2 1 1 1 6 2 4 1
0 0 4 0
0 0 0 1

uS

 
 − = − =
 
 
 

 

[ ] [ ]

1 0 0 0
0 1 0 0

2 1 1 1 4 6 0 1
0 0 1 0
2 5 1 1

uT

 
 
 = − = −
 
 − − 

 

( ) [ ] [ ]

3 0 0 0 1 0 0 0
0 2 0 0 0 1 0 0

2 1 1 1 8 3 3 1
0 0 4 0 0 0 1 0
0 0 0 1 2 5 1 1

u ST

   
   −   = − = −
   
   − −   

 

 
ST TS≠ . 
 

2. Show , ,
x

x y z y

z

v
uv u u u v u v

v

 
  = = ⋅   
  

.   

 
The notation uv  means the product of a 1 3×  row vector u  with a 3 1×  column vector v  
so that the matrix product is defined.  By the definition of matrix multiplication we have 
that the product of a 1 3×  matrix with a 3 1×  matrix is a 1 1×  matrix; we can think of a 
1 1×  matrix as just a scalar.  Applying Equation 2.1 we obtain: 
 

, ,
x

x y z y x x y y z z x x y y z z

z

v
u u u v u v u v u v u v u v u v u v

v

 
    = + + = + + = ⋅    
  

 

 
This exercise simply shows that we can express a dot product in matrix notation using 
matrix multiplication. 
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3. Using S and T from Exercise 1, compute TS , TT , and ( )TST .  What is ( )TTS  and 

( )TTT ?  Does ( )T T TST T S= ? 
 

 

3 0 0 0 3 0 0 0
0 2 0 0 0 2 0 0
0 0 4 0 0 0 4 0
0 0 0 1 0 0 0 1

T

TS S

   
   − −   = = =
   
   
     

 
Observe for this special matrix, TS S= .  When a matrix equals its transpose, the matrix 
is said to by symmetric.   
 

 

1 0 0 0 1 0 0 2
0 1 0 0 0 1 0 5
0 0 1 0 0 0 1 1
2 5 1 1 0 0 0 1

T

TT

   
   −   = =
   −
   − −   

 

 

 ( )

3 0 0 0 3 0 0 2
0 2 0 0 0 2 0 5
0 0 4 0 0 0 4 1
2 5 1 1 0 0 0 1

T

TST

   
   − − −   = =
   −
   − −   

 

 

 ( )
3 0 0 0 3 0 0 0 3 0 0 0
0 2 0 0 0 2 0 0 0 2 0 0
0 0 4 0 0 0 4 0 0 0 4 0
0 0 0 1 0 0 0 1 0 0 0 1

TT T

TTS S

      
      − − −      = = = =      
             

 

 

 ( )
1 0 0 0 1 0 0 2 1 0 0 0
0 1 0 0 0 1 0 5 0 1 0 0
0 0 1 0 0 0 1 1 0 0 1 0
2 5 1 1 0 0 0 1 2 5 1 1

TT T

TTT T

      
      −      = = = =      −       − − − −      

 

 
So if we take one transpose, we interchange the rows and columns.  If we take another 
transpose, we interchange the rows and columns again and end up back to where we 
started. 
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 ( )

1 0 0 2 3 0 0 0 3 0 0 2
0 1 0 5 0 2 0 0 0 2 0 5
0 0 1 1 0 0 4 0 0 0 4 1
0 0 0 1 0 0 0 1 0 0 0 1

TT TT S ST

     
     − − − −     = = =
     − −
     
     

. 

 
4. Using S and T from Exercise 1, verify that ( ) 1 1 1ST T S− − −= .  (Use 
D3DXMatrixInverse to do the calculations.) 
 
Using D3DXMatrixInverse, we find that: 
 

 ( )

1
3

1
1 2

1
4

52 1
3 2 4

0 0 0
0 0 0
0 0 0

1

ST
−

−

−−

 
 
 =
 
 
 

, 

1
3

1
1 2

1
4

0 0 0
0 0 0
0 0 0
0 0 0 1

S
−

−

 
 
 =
 
 
 

, 1

1 0 0 0
0 1 0 0
0 0 1 0
2 5 1 1

T −

 
 
 =
 
 − 

 

 
Using the definition of matrix multiplication, we compute  
 

 

1
3

1
21 1

1
4

52 1
3 2 4

0 0 0
0 0 0
0 0 0

1

T S
−

− −

−−

 
 
 =
 
 
 

. 

 
We see that indeed ( ) 1 1 1ST T S− − −= . 
 
5. Write the following linear combination as a vector-matrix multiplication: 

( ) ( ) ( )2 1, 2, 3 4 5, 0, 1 3 2, 2, 3v = + − − − + − − . 
 
Observe: 

 
( ) ( ) ( )

( ) ( ) ( )
( )

2 1, 2, 3 4 5, 0, 1 3 2, 2, 3

2, 4, 6 20, 0, 4 6, 6, 9

28, 2,1

v = + − − − + − −

= + + − −

= −

 

 
By Equation 2.2, we can write this linear combination as a vector-matrix product: 
 

 [ ] [ ]
1 2 3

2, 4, 3 5 0 1 28, 2,1
2 2 3

v
 
 = − − − = − 
 − − 
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6. Redo Exercise 11 from Chapter 1 using Equation 2.3.   
 
The idea here is to just express the change of frame calculation by a matrix equation, 
namely Equation 2.3.  To change from frame A to frame B, we stick the frame A vectors, 
with coordinates relative to frame B in homogeneous coordinates, u , v , w , and O  into 
the rows of a matrix C.  Then, given the vector/point ( ), , ,Ap x y z w=  that specifies a 
vector/point relative to a frame A, we obtain the same vector/point, identified by 

( ), , ,Bp x y z w=  relative to frame B, by performing the vector-matrix multiplication: 

B Ap p C= .   
 From Exercise 11 of Chapter 1, we have, in homogenous coordinates, the frame A 
vectors (relative to frame B): 
 

( )1 2 ,1 2 , 0, 0u = , ( )1 2 ,1 2 , 0, 0v = − , ( )0, 0,1, 0w = , ( )6, 2, 0,1O = −  

 
And, again in homogeneous coordinates, ( )1, 2, 0,1Ap = −  and ( )1, 2, 0, 0Aq = . 

Then the change of frame transformation may be computed as follows: 
   

[ ] ( )

1 1
2 2

1 1
3 6 2 2 2 12 2

2 2

0 0

0 0
1, 2, 0,1 , , 0,1

0 0 1 0
6 2 0 1

Bp
−

− −

 
 
 = − = 
 
 − 

 

 

[ ] ( )

1 1
2 2

1 1
312 2

2 2

0 0

0 0
1, 2, 0, 0 , , 0, 0

0 0 1 0
6 2 0 1

Bq
−

−

 
 
 = = 
 
 − 

 

 
7. Show that  
 

[ ]
11 12 13 11 12 13 1 1

21 22 23 21 22 23 2 1 2 3 2

31 32 33 31 32 33 3 3

row row

row col col col row

row row

u u u v v v u u B
AB u u u v v v u v v v u B

u u u v v v u u B

       
       = = =       
              

. 

 
This result shows that a matrix-matrix multiplication can be viewed as several linear 
combinations; specifically, in this case, the matrix product AB  is essentially the three 
linear combinations 1rowu B , 2rowu B , and 3rowu B .  
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 One way to do this is to just do the matrix multiplication brute force, but it is 
tedious even for small 3 3×  matrices.  To make things simpler, we will only calculate the 
ith row of AB , where i  is arbitrarily 1, 2, or 3.   
 

 

( )

[ ]

1 2 3

11 12 13

1 2 3 21 22 23

31 32 33

row i col row i col row i colrow i

i i i

row i

AB u v u v u v

v v v
u u u v v v

v v v
u B

 = ⋅ ⋅ ⋅ 

 
 =  
  

=

 

 
Now we just let i  vary over 1, 2, and 3 to obtain the result: 
 

 
11 12 13 11 12 13 1

21 22 23 21 22 23 2

31 32 33 31 32 33 3

row

row

row

u u u v v v u B
AB u u u v v v u B

u u u v v v u B

     
     = =     
          

 

 
  

Chapter 3 Transformations; Planes 
 
1. Show that the x-axis rotation transformation given by Equation 3.7 is a linear 
transformation. 
 
Recall ( ) ( ), cos sin , sin cosxR u x y z y zθ θ θ θ= − + .  We must show that this 
transformation satisfies the linearity condition, which is Equation 3.1.  (To save 
horizontal space, we will use column vector notation.) 
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( ) ( ) ( )
( ) ( )

cos sin

sin cos

cos cos sin sin
sin sin cos cos

cos sin
sin cos

x x

x y y z z

y y z z

x x

y y z z

y y z z

x

y z

y z

u v

R u v u v u v

u v u v

u v
u v u v
u v u v

u
u u
u u

α β

α β α β θ α β θ

α β θ α β θ

α β
α θ β θ α θ β θ
α θ β θ α θ β θ

α
α θ α θ
α θ α θ

 + 
 + = + − +
 
 + + + 
 +
 = + − − 
 + + + 
 
 = − + 
 + 

( ) ( )

cos sin
sin cos

cos sin cos sin
sin cos sin cos

x

y z

y z

x x

y z y z

y z y z

x x

v
v v
v v

u v
u u v v
u u v v

R u R v

β
β θ β θ
β θ β θ

α θ θ β θ θ
θ θ θ θ

α β

 
 − 
 + 

   
   = − + −   
   + +   

= +

 

 
We have shown ( )xR u  to be a linear transformation. 
 
2. Show that the identity function, defined by ( )I u u= , is a linear transformation, and 
show that its matrix representation is the identity matrix. 
 
We have ( ) ( ) ( )I u v u v I u I vα β α β α β+ = + = ⋅ + ⋅ , so the definition 3.1 of a linear 
transformation is satisfied.  By applying the linear transformation to each of the basis 
vectors and then putting them into the rows of a matrix, we obtain the matrix 
representation of the identity function: 
 

 

( )
( )
( )

1 0 0
0 1 0
0 0 1

I i i
I j j

kI k

 
    
     = =    
       

 

 

 
 
3. Show that the row vectors in the y-axis rotation matrix yR  are orthonormal.   
 

Recall 
cos 0 sin

0 1 0
sin 0 cos

yR
θ θ

θ θ

− 
 =  
  

. 
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To show the row vectors are orthonormal, we must show they all are of unit length and 
that they are all mutually orthogonal.  Let ( )1 cos , 0, sinr θ θ= − , ( )2 0,1, 0r = , and 

( )3 sin , 0, cosr θ θ=  be the row vectors of the matrix yR .  By the well known trig identity 
2 2cos sin 1θ θ+ = , we have: 

 

 ( )2 2 2
1 cos 0 sin 1r θ θ= + + − =  

 2 2 2
2 0 1 0 1r = + + =  

 2 2 2
3 sin 0 cos 1r θ θ= + + =  

 
So all the row vectors are of unit length.  Now a straightforward application of the dot 
product shows: 
 
 1 2 0r r⋅ =  
 1 3 0r r⋅ =  
 2 3 0r r⋅ =  
 
Thus the row vectors are all orthogonal to each other.  We have shown the row vectors to 
be orthonormal. 
 
4. Let yR  be the y-axis rotation matrix.  Show that the transpose of this matrix is its 

inverse; that is, show T T
y y y yR R R R I= = . 

 
cos 0 sin

0 1 0
sin 0 cos

T
yR

θ θ

θ θ

 
 =  
 − 

 

 

 
cos 0 sin cos 0 sin 1 0 0

0 1 0 0 1 0 0 1 0
sin 0 cos sin 0 cos 0 0 1

T
y yR R I

θ θ θ θ

θ θ θ θ

−     
     = = =     
     −     

 

  

 
cos 0 sin cos 0 sin 1 0 0

0 1 0 0 1 0 0 1 0
sin 0 cos sin 0 cos 0 0 1

T
y yR R I

θ θ θ θ

θ θ θ θ

−     
     = = =     
     −     

 

 
The inverse is unique so we must have 1T

y yR R−= . 
 
5. In §3.1.4, we showed how the x-axis, y-axis, and z-axis rotation matrices could be 
derived directly.  Another perspective is to think of these rotation matrices as special 
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cases of the arbitrary axis rotation matrix.  Show that the arbitrary axis rotation matrix 
reduces to the x-axis, y-axis, and z-axis rotation matrices when q  equals, i , j , and k  
(i.e., the standard basis vectors), respectively.   
 

We have 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2

2

2

1 1 1
1 1 1
1 1 1

q

c x c xy c zs xz c ys
R xy c zs c y c yz c xs

xz c ys yz c xs c z c

 + − − + − −
 = − − + − − + 
 − + − − + − 

. 

 
Taking ( )1, 0, 0q i= = , we have in the above matrix 1, 0x y z= = = , and matrix reduces 
to: 
 

 
( )1 1 0 0 1 0 0
0 0 cos sin
0 0 sin cos

xi

c c
R c s R

s c
θ θ
θ θ

 + −  
   = = =   
   − −  

. 

 
The process is analogous to obtain the y-axis, and z-axis rotation matrices. 
 
6. Show that the translation matrix affects points, but not vectors.   
 
Using the definition of matrix multiplication (Equation 2.1), we have: 
 

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 0 0
0 1 0 0

, , ,1
0 0 1 0

1

, , ,1 1,0,0, , , , ,1 0,1,0, , , , ,1 0,0,1, , , , ,1 0,0,0,1

, , ,1

x y z

x y z

x y z

x y z

b b b

x y z b x y z b x y z b x y z

x b y b z b

 
 
 
 
 
  

 = ⋅ ⋅ ⋅ ⋅ 
 = + + + 

 
and 
 

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]

1 0 0 0
0 1 0 0

, , , 0
0 0 1 0

1

, , ,0 1,0,0, , , , ,0 0,1,0, , , , ,0 0,0,1, , , , ,0 0,0,0,1

, , , 0

x y z

x y z

x y z

b b b

x y z b x y z b x y z b x y z

x y z

 
 
 
 
 
  

 = ⋅ ⋅ ⋅ ⋅ 
=
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7. Verify that the given scaling matrix inverse is indeed the inverse of the scaling matrix; 
that is, show, by directly doing the matrix multiplication, that 1 1SS S S I− −= = .  
Similarly, verify that the given translation matrix inverse is indeed the inverse of the 
translation matrix; that is, show, by directly doing the matrix multiplication, that 

1 1TT T T I− −= = . 
 

 

1

1
1

1

0 0 00 0 00 0 0 1 0 0 0
0 0 0 0 0 00 0 0 0 1 0 0

0 0 0 0 0 1 00 0 0 0 0 0
0 0 0 1 0 0 0 10 0 0 1 0 0 0 1

x

xx

y

y y

z
z

z

s
ssx

s
sy s

sz s s

s
s

SS I
s

−

               = = = =                   

 

 

 

1

1
1

1

0 0 00 0 0 0 0 0 1 0 0 0
0 0 0 0 0 00 0 0 0 1 0 0

0 0 0 0 0 1 00 0 0 0 0 0
0 0 0 1 0 0 0 10 0 0 1 0 0 0 1

x

xx

y

y y

z
z

z

s
ss x

s
s y s

szs s

s
s

S S I
s

−

                  = = = =                      

 

 

1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 1 1 0 0 0 1x y z x y z x x y y z z

TT I

b b b b b b b b b b b b

−

       
       
       = = = =
       
       − − − − − −            

 

1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 1 1 0 0 0 1x y z x y z x x y y z z

T T I

b b b b b b b b b b b b

−

       
       
       = = = =
       
       − − − − − −            

 
 
8. Let ( )0 0,1, 0p = , ( )1 1, 3, 6p = − , and ( )2 8, 5, 3p =  be three points.  Find the plane 
these points define. 
 
Two vectors on the plane are given by: 
 

( ) ( ) ( )
( ) ( ) ( )

1 0

2 0

1, 3, 6 0,1, 0 1, 2, 6

8, 5, 3 0,1, 0 8, 4, 3

u p p

v p p

= − = − − = −

= − = − =
 

 
Now take the cross product to get a vector perpendicular to the plane (i.e., the plane 
normal): 
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( ) ( ) ( )1, 2, 6 8, 4, 3 18, 51, 20n u v= × = − × = − − . 

 
Moreover, ( )0 51d n p= − ⋅ = − .  Then the plane consists of all the points ( ), ,p x y z=  that 
satisfy the equation: 
 
 ( ) ( )0 0 18 51 20 51 0n p p n p n p x y z⋅ − = ⋅ − ⋅ = − + − − = . 
 
Remark: Because we didn’t normalize the plane normal, the value d is no longer the 
signed distance from the origin, but some scaled distance. 
 
9. Let ( )1 1 1

3 3 3
, , , 5π = −  be a plane.  Define the locality of the following points relative 

to the plane: ( )3 3, 5 3, 0 , ( )2 3, 3, 2 3 , and ( )3, 3, 0− . 

 
The plane equation is: 1 1 1

3 3 3
5 0x y z+ + − = .  Plugging these points into the left-hand 

side of the equation gives: 
 
 ( ) ( ) ( )1 1 1

3 3 3
3 3 5 3 0 5 3 In front of the plane+ + − = ⇒  

 ( ) ( ) ( )1 1 1
3 3 3

2 3 3 2 3 5 0 On the plane+ + − = ⇒  

 ( ) ( ) ( )1 1 1
3 3 3

3 3 0 5 5 In back of the plane+ − + − = − ⇒  

 
10. Let ( )1 1 1

3 3 3
, , , 5π = −  be a plane, and let ( ) ( ) ( )1,1, 1 1,0,0r t t= − − +  be a ray.  Find 

the point at which the ray intersects the plane.  Then write a short program using the 
D3DXPlaneIntersectLine (see the SDK documentation for the prototype) function 
to verify your answer. 
 

 ( )
( )

( )1
30

1
3

5
5 3 1

d n p
t

n u

−−− − ⋅
= = = +

⋅
 

 

 

( ) ( ) ( )( )

( ) ( )
( )

5 3 1 1,1, 1 5 3 1 1,0,0

1,1, 1 5 3 1,0,0

5 3,1, 1

r + = − − + +

= − − + +

= −

 

 
We plug ( )5 3,1, 1−  into the plane equation to verify it indeed lies on the plane: 
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 1 1 15 3 5 0 On the plane
3 3 3

+ − − = ⇒  

 
The code is given by: 
 
#include <d3dx9.h> 
#include <iostream> 
using namespace std; 
 
// Overload the  "<<" operators so that we can use cout to  
// output D3DXVECTOR3 objects. 
 
ostream& operator<<(ostream& os, D3DXVECTOR3& v) 
{ 
 os << "(" << v.x << ", " << v.y << ", " << v.z << ")"; 
 return os; 
} 
 
int main() 
{ 
 D3DXVECTOR3 p0(-1.0f, 1.0f, -1.0f); 
 D3DXVECTOR3 u(1.0f, 0.0f, 0.0f); 
 
 // Construct plane by specifying its (A, B, C, D)  
      // components directly. 
 float s = 1.0f / sqrtf(3); 
 D3DXPLANE plane(s, s, s, -5.0f); 
 
 // Function expects a line segment and not a ray; so we just 
 // truncate our ray at p0 + 100*u to make a line segment. 
 D3DXVECTOR3 isect; 
 D3DXPlaneIntersectLine(&isect, &plane, &p0, &(p0 + 100*u));  
 
 cout << isect << endl; 
 
 return 0; 
} 
 
The output is: 
 
(8.66025, 1, -1) 
Press any key to continue . . . 
 
We note 5 3 8.66025≈ , so the computer result agrees with our calculation. 


