Introduction to 3D Game Programming with DirectX 9.0c: A Shader Approach

Introduction

Part I Mathematical Prerequisites

Chapter 1 Vector Algebra
1.1 Vectors
 1.1.1 Vectors and Coordinate Systems
 1.1.2 Left-Handed Versus Right-Handed Coordinate Systems
 1.1.3 Basic Vector Operations
1.2 Length and Unit Vectors
1.3 The Dot Product
1.4 The Cross Product
1.5 Change of Frame
 1.5.1 Vectors
 1.5.2 Points
1.6 Rays, Lines, and Segments
1.7 D3DX Vectors
1.8 Summary
1.9 Exercises

Chapter 2 Matrix Algebra
2.1 Definition
2.2 Matrix Multiplication
 2.2.1 Vector-Matrix Multiplication
 2.2.2 Matrix-Matrix Multiplication and Associativity
2.3 The Transpose of a Matrix
2.4 The Identity Matrix
2.5 The Inverse of a Matrix
2.6 D3DX Matrices
2.7 Summary
2.8 Exercises

Chapter 3 Transformations; Planes
3.1 Linear Transformations
 3.1.1 Definition
 3.1.2 Matrix Representation
 3.1.3 Scaling
 3.1.4 Rotation about the Coordinate Axes
 3.1.5 Rotation About an Arbitrary Axis
3.2 Affine Transformations
 3.2.1 Definition and Matrix Representation
 3.2.2 Translation
3.3.3 Affine Matrices for Scaling and Rotation
3.3 D3DX Transformation Functions
3.4 Composition of Affine Transformations
3.5 Planes
 3.5.1 D3DXPlane
 3.5.2 Point and Plane Spatial Relation
 3.5.3 Construction
 3.5.4 Normalizing a Plane
 3.5.5 Transforming a Plane
 3.5.6 Nearest Point on a Plane to a Particular Point
 3.5.7 Ray/Plane Intersection
3.6 Summary
3.7 Exercises

Part II Direct3D Foundations

Chapter 4 Direct3D Initialization
 4.1 Direct3D Overview
 4.1.1 Devices
 4.1.2 COM
 4.2 Some Preliminaries
 4.2.1 Surfaces
 4.2.2 The Swap Chain and Page Flipping
 4.2.3 Pixel Formats
 4.2.4 Display Adapters
 4.2.5 Depth Buffers
 4.2.6 Multisampling
 4.2.7 Memory Pools
 4.2.8 Vertex Processing and Pure Devices
 4.2.9 Device Capabilities
 4.3 Initializing Direct3D
 4.3.1 Acquiring an IDirect3D9 Interface
 4.3.2 Verifying HAL Support
 4.3.3 Checking for Hardware Vertex Processing
 4.3.4 D3DPRESENT_PARAMETERS
 4.3.5 Creating the IDirect3DDevice9 Interface
 4.4 Lost Devices
 4.5 The Demo Application Framework
 4.5.1 D3DApp
 4.5.2 Non-Framework Methods
 4.5.3 Framework Methods
 4.5.4 The Message Handler: msgProc
 4.5.5 Switching to Full Screen Mode and Back
 4.6 Demo Application: Hello Direct3D
 4.7 Debugging Direct3D Application Tips
 4.8 Summary
4.9 Exercises

Chapter 5 Timing; Direct Input; Animation and Sprites
5.1 The Performance Timer
 5.1.1 Time Differential Between Frames
 5.1.2 Frames Per Second Calculation
 5.1.3 Graphics Stats Demo
5.2 Direct Input Primer
 5.2.1 Interfaces
 5.2.2 Initializing the Keyboard and Mouse
 5.2.3 Cleanup
 5.2.4 Polling the Keyboard and Mouse
5.3 Sprites and Animation
 5.3.1 ID3DXSprite
 5.3.2 The Sprite Demo
 5.3.2.1 Bullet Structure
 5.3.2.2 Demo Application Class Data Members
 5.3.2.3 SpriteDemo
 5.3.2.4 ~SpriteDemo
 5.3.2.5 checkDeviceCaps
 5.3.2.6 onLostDevice
 5.3.2.7 onResetDevice
 5.3.2.8 updateScene
 5.3.2.9 updateShip
 5.3.2.10 updateBullets
 5.3.2.11 drawScene
 5.3.2.12 drawBkgd
 5.3.2.13 drawShip
 5.3.2.14 drawBullets
 5.3.3 Page Flipping Animation
5.4 Summary
5.5 Exercises

Chapter 6 The Rendering Pipeline
6.1 The 3D Illusion
6.2 Model Representation
 6.2.1 Vertex Declarations
 6.2.2 Triangles
 6.2.3 Indices
6.3 The Virtual Camera
 6.3.1 The Frustum
 6.3.2 Perspective Projection
6.4 The Rendering Pipeline
 6.4.1 Local Space and World Space
 6.4.2 View Space
 6.4.3 Lighting
6.4.4 Projection Transformation
 6.4.4.1 Defining a Frustum; Aspect Ratio
 6.4.4.2 Projecting Vertices
 6.4.4.3 Normalizing the Coordinates
 6.4.4.4 Transforming the z-Coordinate
 6.4.4.5 Writing the Projection Equations with a Matrix
 6.4.4.6 D3DXMatrixPerspectiveFovLH

6.4.5 Backface Culling
6.4.6 Clipping
6.4.7 Viewport Transform
6.4.8 Rasterization

6.5 Summary
6.6 Exercises

Chapter 7 Drawing in Direct3D Part I
7.1 Vertex/Index Buffers
 7.1.1 Creating a Vertex and Index Buffer
 7.1.2 Accessing a Buffer’s Memory
 7.1.3 Vertex and Index Buffer Info
7.2 Drawing Methods
 7.2.1 DrawPrimitive
 7.2.2 DrawIndexedPrimitive
7.3 Drawing Preparations
 7.3.1 Vertex Streams
 7.3.2 Setting Indices
 7.3.3 Setting the Vertex Declaration
7.4 Cube Demo
 7.4.1 Vertex Structure
 7.4.2 CubeDemo Class Data Members
 7.4.3 Construction
 7.4.4 Destruction
 7.4.5 onLostDevice / onResetDevice
 7.4.6 updateScene
 7.4.7 drawScene
7.5 Summary
7.6 Exercises

Chapter 8 Drawing in Direct3D Part II
8.1 Checking for Shader Support
8.2 Shaders; the FX Framework
 8.2.1 A Simple Vertex Shader
 8.2.2 A Simple Pixel Shader
 8.2.3 A Simple FX File
 8.2.4 Creating an Effect
 8.2.5 Setting Effect Parameters
8.3 Applying the Effect
8.3.1 Obtaining a Handle to an Effect
8.3.2 Activating an Effect and Setting Effect Parameters
8.3.3 Beginning an Effect
8.3.4 Setting the Current Rendering Pass
8.3.5 Ending an Effect
8.3.6 Example Code

8.4 Triangle Grid Demo
 8.4.1 Vertex Generation
 8.4.2 Index Generation
 8.4.3 Extracting the Grid Geometry

8.5 D3DX Geometric Objects

8.6 Summary
8.7 Exercises

Chapter 9 Color
 9.1 Color Representation
 9.1.1 D3DCOLOR
 9.1.2 D3DCOLORVALUE
 9.1.3 D3DXCOLOR
 9.2 Vertex Colors
 9.3 Colored Cube Demo
 9.4 Digression: Traveling Sine Waves
 9.4.1 Summing Waves
 9.4.2 Circular Waves
 9.4.3 Directional Waves
 9.5 Colored Waves Demo
 9.6 Summary
 9.7 Exercises

Chapter 10 Lighting
 10.1 Light and Material Interaction
 10.2 Diffuse Lighting
 10.2.1 Normal Vectors
 10.2.1.1 Transforming Normal Vectors
 10.2.2 Lambert’s Cosine Law
 10.2.3 Diffuse Lighting
 10.2.4 Diffuse Demo
 10.2.4.1 Vertex Structure
 10.2.4.2 Effect Parameters
 10.2.4.3 The Vertex Shader
 10.2.4.4 The Pixel Shader and Technique
 10.3 Ambient Lighting
 10.4 Specular Lighting
 10.5 Point Lights
 10.6 Spotlights
 10.7 Attenuation
10.8 The Point Light Demo
 10.8.1 Grid Normals
 10.8.2 Animated Light
 10.8.3 Different Materials
 10.8.4 The Vertex Shader
10.9 The Spotlight Demo
10.10 Phong Shading
10.11 Summary
10.12 Exercises

Chapter 11 Texturing
 11.1 Texture Coordinates
 11.2 Creating and Enabling a Texture
 11.3 Filters
 11.4 Mipmaps
 11.4.1 Mipmap Filter
 11.4.2 Using Mipmaps with Direct3D
 11.4.3 Hardware Generated Mipmaps
 11.5 Textured Cube Demo
 11.5.1 Specifying the Texture Coordinates
 11.5.2 Creating the Texture
 11.5.3 Setting and Sampling the Texture
 11.6 Address Modes
 11.7 Tiled Ground Demo
 11.8 Multi-Texturing
 11.8.1 Generating Texture Coordinates
 11.8.2 Creating and Enabling the Textures
 11.8.3 Sampler Objects
 11.8.4 The Vertex and Pixel Shader
 11.9 Spherical and Cylindrical Texturing
 11.9.1 Sphere Mapping
 11.9.2 Cylindrical Mapping
 11.9.3 Texturing Wrapping
 11.9.4 Spherical and Cylindrical Texturing Demo
 11.10 Texture Animation
 11.11 Compressed Textures and the DXTex Tool
 11.12 Summary
 11.13 Exercises

Chapter 12 Blending
 12.1 The Blending Equation
 12.2 Blend Factors
 12.2.1 Blend Factor Example 1
 12.2.2 Blend Factor Example 2
 12.2.3 Blend Factor Example 3
 12.2.4 Blend Factor Example 4
12.3 Transparent Teapot Demo
12.4 Transparent Teapot Demo with Texture Alpha Channel
12.5 The Alpha Test
12.6 Summary
12.7 Exercises

Chapter 13 Stenciling
13.1 Using the Stencil Buffer
 13.1.1 Requesting a Stencil Buffer
 13.1.2 The Stencil Test
 13.1.3 Controlling the Stencil Test
 13.1.3.1 Stencil Reference Value
 13.1.3.2 Stencil Mask
 13.1.3.3 Stencil Value
 13.1.3.4 Comparison Operation
 13.1.4 Updating the Stencil Buffer
 13.1.5 Stencil Write Mask
13.2 Mirror Demo
 13.2.1 The Mathematics of Reflection
 13.2.2 Mirror Implementation Overview
 13.2.3 Code and Explanation
 13.2.3.1 Part I
 13.2.3.2 Part II
 13.2.3.3 Part III
 13.2.3.4 Part IV
 13.2.3.5 Part V
13.3 Sample Application: Planar Shadows
 13.3.1 Parallel Light Shadows
 13.3.2 Point Light Shadows
 13.3.3 The Shadow Matrix
 13.3.4 Using the Stencil Buffer to Prevent Double Blending
 13.3.5 Code and Explanation
13.4 Summary
13.5 Exercises

Part III Applied Direct3D and the D3DX Library

Chapter 14 Meshes
14.1 Geometry Info
14.2 Subsets and the Attribute Buffer
14.3 Drawing
14.4 Adjacency Info
14.5 Optimizing
14.6 The Attribute Table
14.7 Cloning
14.8 Creating a Mesh (D3DXCreateMesh)
14.9 .X Files
 14.9.1 Loading a .X File
 14.9.2 Testing for Vertex Normals
 14.9.3 Changing the Vertex Format
 14.9.4 .X File Materials
 14.9.5 Optimizing
 14.9.6 .X File Materials
 14.9.7 The .X File Demo

14.10 Bounding Volumes
 14.10.1 Some New Special Constants
 14.10.2 Bounding Volume Types
 14.10.3 Bounding Box Demo

14.11 Survey of Other D3DX Mesh Functions
 14.11.1 D3DXSplitMesh
 14.11.2 D3DXConcatenateMeshes
 14.11.3 D3DXValidMesh
 14.11.4 D3DXCleanMesh
 14.11.5 D3DXWeldVertices
 14.11.6 D3DXSimplifyMesh
 14.11.7 D3DXGeneratePMesh

14.12 Summary
14.13 Exercises

Chapter 15 Mesh Hierarchy Animation Part I: Rigid Meshes
15.1 Robot Arm Demo
 15.1.1 Mathematical Formulation
 15.1.2 Implementation
 15.1.2.1 Bone Mesh
 15.1.2.2 Bone Data Structure
 15.1.2.3 Building the Bone World Matrices
 15.1.2.4 Animating and Rendering the Bones

15.2 Solar System Demo
 15.2.1 Solar Object Data Structure
 15.2.2 Building the Solar Object World Matrices
 15.2.3 Animating the Solar System

15.3 Keyframes and Animation
15.4 Summary
15.5 Exercises

Chapter 16 Mesh Hierarchy Animation Part II: Skinned Meshes
16.1 Overview of Skinned Meshes
 16.1.1 Definitions
 16.1.2 Reformulating a Bones To-Root Transform
 16.1.3 The Offset Transform
 16.1.4 Vertex Blending
 16.1.5 D3DXFRAME
16.2 Skinned Mesh Demo
 16.2.1 SkinnedMesh Overview
 16.2.2 D3DXMESHCONTAINER
 16.2.3 ID3DXAnimationController
 16.2.4 ID3DXAllocateHierarchy
 16.2.5 D3DXLoadMeshHierarchyFromX and D3DXFrameDestroy
 16.2.6 Finding the One and Only Mesh
 16.2.7 Converting to a Skinned Mesh
 16.2.8 Building the To-Root Transform Matrix Array
 16.2.9 Initialization Summarized
 16.2.10 Animating the Skinned Mesh

16.3 Summary
16.4 Exercises

Chapter 17 Terrain Rendering Part I
17.1 Heightmaps
 17.1.1 Creating a Heightmap
 17.1.2 Heightmap Class Overview
 17.1.3 Loading a RAW File
 17.1.4 Filtering
17.2 Basic Terrain Demo
 17.2.1 Building the Terrain Geometry
 17.2.2 Lighting and Texturing the Terrain
 17.2.3 The Vertex and Pixel Shaders
17.3 Multi-Sub-Grid Terrain
17.4 Building a Flexible Camera
 17.4.1 View Transformation Recapitulation
 17.4.2 Camera Functionality
 17.4.3 The Camera Class
 17.4.4 Updating the Camera
 17.4.5 Building the View Matrix
 17.4.6 Camera Demo Comments
17.5 “Walking” on the Terrain
 16.5.1 Getting the Terrain Height
 16.5.2 Moving Tangent to the Terrain
17.6 Summary
17.7 Exercises

Chapter 18 Terrain Rendering Part II
18.1 Sub-Grid Culling and Sorting
 18.1.1 The SubGrid Structure
 18.1.2 Extracting Frustum Planes
 18.1.3 Frustum/AABB Intersection Test
 18.1.4 Experiments
18.2 Trees; Castle
18.3 Fog
18.4 Grass
 18.4.1 The Billboard Matrix
 18.4.2 Animating the Grass
 18.4.3 The Grass Vertex Structure
 18.4.4 Building a Grass Fin
 18.4.5 Grass Effect
18.5 Water
18.6 Summary
18.7 Exercises

Chapter 19 Particle Systems
19.1 Particles and Point Sprites
 19.1.1 Using Point Sprites
 19.1.2 Particle Motion
 19.1.3 Randomness
 19.1.4 Structure Format
 19.1.5 Render States
19.2 Particle System Framework
 19.2.1 Selected PSystem Data Members
 19.2.2 Selected PSystem Methods
19.3 Example 1: Fire Ring
 19.3.1 Initializing the Particles
 19.3.2 The Fire Ring Effect
19.4 Example 2: Rain
 19.4.1 Initializing the Particles
 19.4.2 The Rain Effect
19.5 Example 3: Sprinkler
 19.5.1 Initializing the Particles
 19.5.2 The Sprinkler Effect
19.6 Example 4: Bolt Gun
 19.6.1 Initializing the Particles
 19.6.2 The Gun Effect
19.7 Summary
19.8 Exercises

Chapter 20 Picking
20.1 Screen to Projection Window Transform
20.2 World Space Picking Ray
20.3 Ray/Object Intersection Tests
20.4 Tri-Pick Demo
20.5 Asteroids Demo
20.6 Summary
20.7 Exercises

Chapter 21 Advanced Texturing Part I
21.1 Cube Mapping
 21.1.1 Environment Maps
 21.1.2 Loading and Using Cube Maps in Direct3D
 21.1.3 Environment Map Demo
 21.1.3.1 Sky Sphere
 21.1.3.2 Reflections

21.2 Normal Mapping
 21.2.1 Storing Normal Maps in Textures
 21.2.2 Generating Normal Maps
 21.2.3 Using Normal Maps
 21.2.4 Implementation Details
 21.2.4.1 Computing the TBN-Frame Per Vertex
 21.2.4.2 Effect Parameters
 21.2.4.3 The Vertex Shader
 21.2.4.4 The Pixel Shader
 21.2.4.5 The Brick Demo
 21.2.5 Normal Mapping Water

21.3 Render to Texture
 21.3.1 D3DXCreateRenderToSurface
 21.3.2 D3DXCreateTexture
 21.3.3 IDirect3DTexture9::GetSurfaceLevel
 21.3.4 Drawing to the Surface/Texture
 21.3.5 DrawableTex2D
 21.3.6 Render To Texture Demo

21.4 Summary
21.5 Exercises

Chapter 22 Advanced Texturing Part II

22.1 Projective Texturing
 22.1.1 Generating Projective Texture Coordinates
 22.1.2 Projective Texture Coordinates Outside [0, 1]
 22.1.3 Sample Code

22.2 Shadow Mapping
 22.2.1 Checking for D3DFMT_R32F Support
 22.2.2 Building the Shadow Map
 22.2.3 The Shadow Map Test
 22.2.4 Filtering

22.3 Displacement Mapping
 22.3.1 Checking Device Capabilities
 22.3.2 Demo Overview
 22.3.3 tex2Dlod
 22.3.4 Filtering
 22.3.5 The Vertex Shader

22.4 Summary
22.5 Exercises
Appendix A Windows Programming
Appendix B HLSL Reference

Index